

European Technical Assessment

ETA 21/0664 of 13/09/2021

(English language translation, the original version in Czech language)

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product

EJOT Multifix PSF+ EJOT Multifix PSF+ Blue EJOT Multifix PSF+ Tropical EJOT Multifix PSF+ Winter

Product family to which the construction product belongs

Product area code: 33

Bonded injection type anchor for use in

uncracked concrete

Manufacturer

EJOT Baubefestigungen GmbH

In der Stockwiese 35 Bad Laasphe, 57334

Germany

Manufacturing plant(s)

EJOT Plant 24

This European Technical Assessment contains

15 pages including 12 Annexes which form an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-01-0601 Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The EJOT Injection System Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Tropical and Multifix PSF+ Winter for uncracked concrete is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel elements consists of a commercial threaded rods, a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	Annex C1, C2
Characteristic resistance to shear load (static and quasi-static loading)	Annex C1, C3
Displacements under short term and long term loading	Annex C4
Durability	Annex B1
Characteristic resistance and displacements for seismic performance categories C1 and C2	NPA

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU)

No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the construction works) or heavy units	-	1

¹ Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 13.09.2021

Ву

Ing. Mária Schaan Head of the Technical Assessment Body

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

d_f = diameter of clearance hole in the fixture

 t_{fix} = thickness of fixture

h_{ef} = effective embedment depth

h₀ = depth of drill hole

h_{min} = minimum thickness of member

EJOT Injection System for concrete Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical Product description

Annex A 1

Installed conditions

Cartridge: EJOT Multifix PSF+, Blue, Winter, Tropical

150 ml, 280 ml, 300 ml up to 330 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

Imprint: EJOT Multifix PSF+, Blue, Winter, Tropical processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and processing time (depending on the temperature), optional: with travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

Static mixer

Mixing Nozzle

EJOT Injection System for concrete

Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical

Product description

Injection system

Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

EJOT Injection System for concrete

Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical

Product description

Threaded rod

Annex A 3

rt	Designation	Material			
te	el, zinc plated (Steel acc. to EN IS	O 683-4:2018 or EN 1	0263:	2001)	
no	plated ≥ 5 μm acc. to EN ISO 4042	:2018 or hot-dip galvani	sed ≥	40 μm acc. to EN ISO 1461:2009 an	d
N	ISO 10684:2004+AC:2009 or sherar	rdized ≥ 40 µm acc. to E	10 ISC	f _{uk} =400 N/mm ² ; f _{yk} =240 N/mm ² ; A ₅ > 8	% fracture alangation
				f_{uk} =400 N/mm ² ; f_{yk} =320 N/mm ² ; $A_5 > 8$	
		Property class		f_{uk} =500 N/mm ² ; f_{yk} =300 N/mm ² ; $A_5 > 8$	
	Anchor rod	acc. to EN ISO 898-1:2013		f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8$	
				f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; $A_5 > 8$	
			4	for anchor rod class 4.6 or 4.8	
	Hexagon nut	Property class	5	for anchor rod class 5.6 or 5.8	
	Hexagon nuc	EN ISO 898-2:2012	8	for anchor rod class 8.8	
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip ga	alvanised or sherardized	
ŧ	inless steel A2 (Material 1.4301 / 1	1.4311 / 1.4307 / 1.4567	or 1.	4541, acc. to EN 10088-1:2014)	
1	· L				
ć	inless steel A4 (Material 1.4401 / 1	Ţ	or 1.	4578, acc. to EN 10088-1:2014)	9/ fracture alapantia
	A 1	Property class acc. to	***************************************	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8$ f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8$	
	Anchor rod ¹⁾	EN ISO 3506-1:2009		f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 8$	
				for anchor rod class 50	70 11 23 21 20 21 21 21
	Hexagon nut 1)	Property class acc. to	70	for anchor rod class 70	
	Tiexagon nat	EN ISO 3506-1:2009	80	for anchor rod class 80	
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	A2: Material 1.4301, 1 A4: Material 1.4401, 1	.4311 .4404	/ 1.4307 / 1.4567 or 1.4541, EN 100 / 1.4571 / 1.4362 or 1.4578, EN 100	088-1:2014 088-1:2014
ig	h corrosion resistance steel (Mat	erial 1.4529 or 1.4565,	acc. t	o EN 10088-1: 2014)	
		Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8$	
	Anchor rod	acc. to	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A ₅ > 8	
_		EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 8$	3% fracture elongation
		Property class	50	for anchor rod class 50	
	Hexagon nut	acc. to EN ISO 3506-1:2009	70	for anchor rod class 70	
		EN 150 3500-1.2009	80	for anchor rod class 80	
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.4	565, a	acc. to EN 10088-1: 2014	
	strength class 80 only for stainless st	and AA + high corrosion	raciet	ance steel HCR	
Č	strength class of only for stanless st	eer A4 + night contosion	100100	dice steel for	
				•	
=	JOT Injection System for co Iultifix PSF+, Multifix PSF+ I	oncrete			

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Uncracked concrete

Temperature range:

- T1: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- T2: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel class A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel class A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with EN 1992-4

Concrete condition:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete
- · 12 installation in water-filled drill holes (not sea water) and use in service in dry or wet concrete

Installation:

- Hole drilling by hammer or compressed air drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

D3 - Downward and horizontal and upwards (e.g. overhead) installation.

EJOT Injection System for concrete

Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical

Intended use Specifications Annex B 1

Table B1: Installation parameters for threaded rod

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24		
Nominal drill hole diameter	d ₀ [mm] =	= 10 12 14 18 24				28			
	h _{ef,min} [mm] =	60	60	70	80	90	96		
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26		
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160		
This has a set of Containing	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120		
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120		

Steel brush RBT

Table B2: Parameter cleaning and setting tools

Threaded Rod	d₀ Drill bit - Ø	d₀ Brush - Ø		d _{b,min} min. Brush - Ø		
(mm)	(mm)	(m	m)	(mm)		
M8	10	RBT10	12	10,5		
M10	12	RBT12	14	12,5		
M12	14	RBT14	16	14,5		
M16	18	RBT18	20	18,5		
M20	24	RBT24	26	24,5		
M24	28	RBT28	30	28,5		

Hand pump (volume 750 ml)

Drill bit diameter (d_o): 10 mm to 20 mm and anchorage depth up to 240 mm

Recommended compressed air tool (min 6 bar) All applications

EJOT Injection System for concrete
Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical

Intended use

Installation parameters Cleaning and setting tools Annex B 2

Installation instructions

Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1). In case of aborted drill hole: the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B2) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

4x

or

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

Check brush diameter (Table B2) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min}(Table B2) a minimum of four times.

If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B2).

or

Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B2) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) <u>must</u> be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again

Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or blue (Multifix PSF+ Blue) colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

EJOT Injection System for concrete Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical

Intended use
Installation instructions

Annex B 3

Installation instructions (continuation)

Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

3. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

	Multifix PSI	F+ Tropical	Multifix PS	SF+, Blue ¹⁾	Multifix PS	F+ Winter
Concrete temperature	Max. working time	Min. curing time	Max. working time	Min. curing time	Max. working time	Min. curing time
-10 to -6 °C					60 min	4 h
-5 to -1 °C			90 min	6 h	45 min	2 h
0 to +4 °C			45 min	3 h	25 min	80 min
+5 to +9 °C			25 min	2 h	10 min	45 min
+10 to +14 °C	30 min	5 h	20 min	100 min	4 min	25 min
+15 to +19 °C	20 min	210 min	15 min	80 min	3 min	20 min
+20 to +29 °C	15 min	145 min	6 min	45 min	2 min	15 min
+30 to +34 °C	10 min	80 min	4 min	25 min		
+35 to +39 °C	6 min	45 min	2 min	20 min		
+40 to +44 °C	4 min	25 min				
+45 °C	2 min	20 min				
Cartridge temperature	+5°C to	+45°C	+5°C to	+40°C	0°C to	+30°C

¹⁾ The Multifix PSF+ Blue injection mortar has a curing time proof by changing the color from blue to gray after curing minimum time. The curing time proof is only valid for the standard version of the mortar.

EJOT Injection System for concrete Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical	
Intended use	Annex B 4
Installation instructions (continuation)	
Curing time	

Characteristic values for steel tension resistance and steel shear resistance Table C1: of threaded rods M 20 M24 M 8 M 10 M 12 M 16 Size 245 353 84,3 157 [mm²] 36,6 58 As Cross section area Characteristic tension resistance, Steel failure 1) 15 (13) 23 (21) 34 63 141 [kN] Steel, Property class 4.6 and 4.8 $N_{Rk,s}$ 122 $N_{\mathsf{Rk},\mathfrak{s}}$ 176 18 (17) 29 (27) 42 78 ľkNi Steel, Property class 5.6 and 5.8 125 196 282 29 (27) 46 (43) 67 $N_{\mathsf{Rk},\mathsf{s}}$ [kN] Steel, Property class 8.8 79 123 177 29 42 $N_{Rk,s}$ [kN] 18 Stainless steel A2, A4 and HCR, Property class 50 171 247 41 59 110 $N_{Rk,s}$ [kN] 26 Stainless steel A2, A4 and HCR, Property class 70 282 196 $N_{\mathsf{Rk},\underline{\mathsf{s}}}$ [kN] 29 46 67 126 Stainless steel A4 and HCR, Property class 80 Characteristic tension resistance, Partial safety factor 2) 2,0 [-] γм_{s,N} Steel, Property class 4.6 1,5 [-] Steel, Property class 4.8 γMs,N 2,0 [-] Steel, Property class 5.6 γ_{Ms,N} 1.5 Steel, Property class 5.8 [-] YMs N 1,5 [-] Steel, Property class 8.8 γ_{Ms,N} 2,86 Stainless steel A2, A4 and HCR, Property class 50 [-] YMs.N 1,87 Stainless steel A2, A4 and HCR, Property class 70 [-] YMs N 1,6 [-] Stainless steel A4 and HCR, Property class 80 YMs,N Characteristic shear resistance, Steel failure 1) $V^0_{Rk,s}$ 85 9 (8) 14 (13) 20 38 59 [kN] Steel, Property class 4.6 and 4.8 39 61 88 $V^0_{Rk,s}$ [kN] 9 (8) 15 (13) 21 Steel, Property class 5.6 and 5.8 141 Without lever 34 63 98 15 (13) 23 (21) V⁰Rk.s [kN] Steel, Property class 8.8 21 39 61 88 $V^0_{Rk,s}$ [kN] 9 15 Stainless steel A2, A4 and HCR, Property class 50 86 124 $V^0_{Rk,s}$ 55 Stainless steel A2, A4 and HCR, Property class 70 [kN] 13 20 30 98 141 34 63 15 23 Stainless steel A4 and HCR, Property class 80 $V^0_{Rk,s}$ [kN] 15 (13) 30 (27) 52 133 260 449 $M^0_{Rk,s}$ [Nm] Steel, Property class 4.6 and 4.8 324 560 $M^0_{Rk,s}$ 37 (33) 65 166 [Nm] 19 (16) Steel, Property class 5.6 and 5.8 896 266 519 $M^0_{Rk,s}$ [Nm] 30 (26) 60 (53) 105 Steel, Property class 8.8 ever 66 167 325 561 37 Stainless steel A2, A4 and HCR, Property class 50 M⁰_{Rk,s} [Nm] 19 ₹ 26 52 92 232 454 784 Stainless steel A2, A4 and HCR, Property class 70 $M^0_{Rk,s}$ [Nm] 266 519 896 30 59 105 $M^0_{Rk,s}$ [Nm] Stainless steel A4 and HCR, Property class 80 Characteristic shear resistance, Partial safety factor 2) 1,67 [-] Steel, Property class 4.6 γ_{Ms,V} 1,25 γмь,∨ [-] Steel, Property class 4.8 1,67 YMs.V [-] Steel, Property class 5.6 1,25 γ_{Мв,}V [-] Steel, Property class 5.8 1,25 YMs,V [-] Steel, Property class 8.8 2,38 Stainless steel A2, A4 and HCR, Property class 50 50 YMs.V [-] 1,56 YMs.V [-] Stainless steel A2, A4 and HCR, Property class 50 70 1,33 YMs.V [-] Stainless steel A4 and HCR, Property class 80 1) Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dipped threaded rods galvanized according to EN ISO 10684:2004+AC:2009. 2) in absence of national regulation **EJOT Injection System for concrete** Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical Annex C 1

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Performances

e ncrete cone failu	N _{Rk,s} γ _{Ms,N}	[kN]			A _s • f _{uk} (or se	e Table C1)			
					A _s • f _{uk} (or se	e Table C1)			
ncrete cone failu	γмs,N	[-]							
ncrete cone failu					see Ta	ble C1			
10,010 00110 14114	re								
in uncracked concr	I	Т	8.5	T 80	8.0	8.0	8,0	8,0	
		1			 		8,0	8,0	
					6,0	6,0	6,0	6,0	
		<u> </u>		6,0	6,0	6,0	6,0	6,0	
ged boro noio			1,04			04			
		30/37			1,	08			
	C35/45		1,13						
	С	40/50	1,15						
	C	45/55	1,17						
			1,19						
Factor		[-]	11,0						
Edge distance		[mm]	1,5 h _{ef}						
	S _{cr,N}	[mm]	2 C _{cr,N}						
l _{ef} ≥ 2,0					1,0	.)			
) > h/h _{ef} > 1,3	c _{cr,sp} [mm]	$2 \cdot h_{ef} \left(2,5 - \frac{n}{h_{ef}} \right)$							
l _{ef} ≤ 1,3									
	S _{cr,sp}	[mm]			2	Ocr,sp			
	γinst	[-]				1,2			
	Yinst	[-]				1,2			
	and wet concrete oded bore hole and wet concrete oded bore hole her ≥ 2,0 > h/her > 1,3 her ≤ 1,3	oded bore hole $ \begin{array}{c} \tau_{Rk,ucr} \\ \tau_{Rk,uc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oded bore hole $\tau_{RK,ucr}$ [N/mm²] 8,5 8,0 8,0 8,0 and wet concrete $\tau_{RK,ucr}$ [N/mm²] 6,5 6,0 6,0 ded bore hole $\tau_{RK,ucr}$ [N/mm²] 6,5 6,0 6,0 $\tau_{RK,ucr}$ 1, $\tau_{$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Annex C 2

Characteristic values under tension loads in uncracked concrete

Performances

Anchor size threaded rod		M 8	M 10	M 12	M 16	M 20	M24	
Steel failure without lever arm								
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ Rk,s	[kN]	0,6 • A₅ • fuk (or see Table C1)					
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 • A₅ • fuk (or see Table C1)					
Partial factor	γ _{Ms,V}	[-]	see Table C1					
Ductility factor	k ₇	[-]	1,0					
Steel failure with lever arm								
Characteristic bending moment	M ^o _{Rk,s}	[Nm]	1,2 • W _{el} • f _{uk} (or see Table C1)					
Partial factor	γмs,∨	[-]			see T	able C1		
Concrete pry-out failure								
Factor	k ₈	[-]				2,0		
Installation factor	Yinst	[-]				1,0		
Concrete edge failure								
Effective length of fastener	l _f	[mm]			l _f = min(f	n _{ef} , 12 d _{nom})		<u>1</u>
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24
Installation factor	Yinst	[-]				1,0		

EJOT Injection System for concrete Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical

Performances

Characteristic values under shear loads in uncracked concrete

Annex C 3

Table C4: Displacement under tension load ¹⁾									
Anchor size threade	Anchor size threaded rod				M 12	M 16	M 20	M24	
Uncracked concrete	C20/25								
	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,08	0,10	
Temperature range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,08	0,08	0,08	0,08	0,10	
	δ _{N0} -factor	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,05	
Temperature range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,17	0,17	0,17	0,17	0,17	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C5: Displacement under shear load¹⁾

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24
For uncracked	concrete C2	0/25						
All temperature	δ _{V0} -factor	[mm/kN]	0,02	0,02	0,01	0,01	0,01	0,01
ranges	δ _{ν∞} -factor	[mm/kN]	0,03	0,02	0,02	0,01	0,01	0,01

¹⁾ Calculation of the displacement

 $δ_{V0} = δ_{V0}\text{-factor} \cdot V;$ $δ_{V\infty} = δ_{V\infty}\text{-factor} \cdot V;$

EJOT Injection System for concrete Multifix PSF+, Multifix PSF+ Blue, Multifix PSF+ Winter, Multifix PSF+ Tropical

Performances

Displacement

Annex C 4